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Polymer Gas Approach to N-Body Lattice Systems
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We give a simple proof, based only on combinatorial arguments, of the Kotecky� �
Preiss condition for the convergence of the cluster expansion. Then we consider
spin systems with long-range N-body interactions. We prove directly, using the
polymer gas representation, that the pressure may be written in terms of an
absolutely convergent series uniformly in the volume when the interaction is
summable in a suitable sense. We also give an estimate of this radius of con-
vergence. In order to get the proof we use a method introduced by Cassandro and
Olivieri in the early 1980s. We apply this method to various concrete examples.

KEY WORDS: Polymer expansion; cluster expansion, N-body interaction
systems; lattice systems.

1. INTRODUCTION

The high temperature-small activity expansion for lattice systems is a sub-
ject carefully investigated since a very long time. In particular the problem
of the analyticity of the thermodynamic functions for systems interacting
through a long range N-body potential has been faced using Kirkwood�
Salzburg (KS) equations in [GMs], [GMM] (see also [R]), where the
analyticity of the pressure of the lattice gas interacting via an N-body
potential has been proved for inverse temperature ; small enough. Later,
using Dobrushin theory, [I] presented a generalization of the results above
to compact spin systems.
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A considerable effort has been also spent in the study of polymer gas
expansion related to various lattice systems. By polymer gas we mean a
system described by functions defined on discrete objects (polymers), with
an exclusion condition between them. The polymer gas representation has
been studied first in the context of low temperature systems; see for example
[GMM] and [R] for the proof of the analyticity of the contour gas, based
again on KS equations.

In the same years [GK] pointed out a remarkable connection
between high temperature lattice spin systems and another polymer gas, in
which the polymers are sets of lattice sites. In particular the partition func-
tion of a lattice system can be written in terms of the grand partition func-
tion of such polymer gas, and the activities related to the polymers are
small for small inverse temperature of the original lattice system, allowing
in principle to obtain analyticity results in such region.

In order to study this analyticity one has to face two problems: the
first is to find a general (model independent) condition to be satisfied to
have the analyticity of the pressure of the polymer gas; the second is to
show that a concrete spin system can be write in terms of a polymer gas
activity which satisfy the model independent condition.

Both problems are studied in many of the references above, but have
been faced also more recently with various techniques.

As far as the model independent condition on polymer gas activity is
concerned, an important result has been obtained in [C], where is given
for the first time a form of such condition by a proof based only on com-
binatorial arguments.

The explicit condition found in [C] is the following: let \(R) be a real
valued polymer activity defined on the polymers R, which are finite subsets
of a d-dimensional cubic lattice Zd. Let |R| be the cardinality of R. If \(R)
satisfies

sup
x # 4

:
R#x
|R|=n

|\(R)|<=n

with ==(1+2e)&1, then the pressure of the polymer gas with activity \
can be written in terms of an absolutely convergent series.

Another combinatorial proof is given in a more abstract context, but
for finite range interactions, in [Se].

Later, in [B] a weaker condition of convergence, namely, in the case
of translational invariance,

:
R % 0

|\(R)| e |R|<1
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with 0 being the origin, has been proved, again using only combinatorial
arguments. As is pointed out in [Si], this purely combinatorial proofs are
important, even if this kind of results was already proved by KS equation
and by Dobrushin theorem. Often the insight given by the direct com-
binatorial proofs can be useful to suggest new ideas.

So far the weakest condition on the analiticity of the polymer gas is
the one found in a very abstract context in [KP], by means of Moebius
inversion formula (see also [Ma]).

In [O] it is remarked that also the KS equations are in principle suf-
ficiently powerful to obtain the same kind of condition.

Recently a slightly stronger condition has been proved with yet dif-
ferent techniques in [NOZ], in the same abstract context of [KP]. Notice
that, once such condition is specialized to the lattice systems in which the
polymers are concretely subsets of Zd, [KP] and [NOZ] seems to be
equivalent, giving for the convergence of the pressure of the polymer gas
the following condition

sup
x # 4

:
R/4 : x # R

|\(R)| ea |R| <a (1.1)

for some a>0.
As far as the model dependent problem is concerned, one has to prove

(1.1) for the concrete models of interest. A difficult combinatorial problem
is still hidden in (1.1), because when one performs the polymer gas
representation for lattice spin systems the polymer activity \(R) is in
general the sum over all the possible connected graphs on R; see below,
(4.4), for the concrete expression of \(R).

To prove directly, i.e. by means of combinatorial arguments, the
inequality (1.1) several method has been proposed; see for example [Si].
One of the most powerful method for two body interaction is based on the
so called tree graph identity, introduced in [BrF], [BF], (see also [B]).
This method has been commonly used in a wide framework, including also
continuous systems and field theory. For a short review of the results on
lattice systems using this method, including the case of unbounded spins,
see [PdLS]. The important feature of this method in the case of two body
interactions sits in the fact that the sum over connected graphs is replaced
by a sum over trees, and the number of terms of the sum over trees is
under control using Cayley formula. Then it is possible to study uniform
bounds of the single tree.

It is possible to attack by means of this method also the class of
problems studied in this paper, i.e. the N-body interaction lattice systems,
see e.g. [B] for a sketchy derivation of the tree identity in this case.
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However for N-body interactions the sum over trees is combinatorially
bad, and has to be carefully controlled. It turns out that in the cases under
control using tree expansion it is also possible to control directly the sum
over connected graphs by a simpler argument, introduced in [CO]. The
continuous systems and the unbounded spin case seems to be for the
moment beyond the possibilities of our method. However, recently some
progress has been made on continuous systems using ideas based on tree
graph identity and discretization of the continuous space (see [RS]).

In this paper we present first of all a direct proof of the convergence
of the pressure for the polymer gas. Using just judicious, combinatorial
bounds, we find a direct proof of (1.1).

Then we present in a self contained way a direct proof of the
analiticity of the pressure or of the free energy for a wide class of lattice
spin systems with spin bounded and long range, N-body interactions.

The model dependent condition of analiticity for polymer gas will be
studied in terms of the nice and simple technique mentioned above, the
Cassandro�Olivieri hierarchy.

Such technique seems to be very powerful, allowing to treat the
N-body case in a very simple way, obtaining theorems based only on com-
binatorial arguments in agreement with the results known so far ([I],
[DM]).

We discuss then the concrete application of this result to various
systems, including the case of high temperature expansion for N-body
interaction with N large but finite, and the low activity expansion for the
lattice gas with N unbounded.

2. BASIC NOTATION AND DEFINITIONS

2.1. Graphs and Generalized Graphs

In general, if A is any finite set, we denote by |A| the number of
elements of A. Given a finite set A, we define a graph g in A as a collection
[*1 , *2 ,..., *m] of distinct subsets of A, such that, for all i, |*i |�2. The sub-
sets *1 , *2 ,..., *m are called links of the graph g. We denote | g| the number
of links in g. Given two graphs g and f we say that f/g if each link of f
is as a link of g.

A graph g=[*1 , *2 ,..., *m] such that * i=2 for all i=1, 2,..., m is called
standard graph.

A graph g=[*1 , *2 ,..., *m] in A is said to be connected if for any pair
B, C of subsets of A such that B _ C=A and B _ C=<, there is a *i # g
such that *i & B{< and *i & C{<.
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If g is connected, then necessarily �m
i=1 *i=A; in this case A is also

called the support of g and it is denoted by supp g.
If g is a graph on A, then the elements of A are called vertices of g.

We denote by GA the set of all connected graphs of A and by GA the subset
of GA consisting of all connected standard graphs in A.

A tree graph { on [1,..., n] is a standard connected graph such that
|{|=n&1. The set of all the tree graph over [1,..., n] will be denoted
by Tn . The number of incidence di of the vertex i of a tree graph is the
number of links * such that i # *.

Let [R1 ,..., Rn] be non empty subsets of a given set 4, then we denote
by g(R1 ,..., Rn) the standard graph in [1, 2,..., n] which has the link [i, j ]
if and only if Ri & Rj{<. We will simply denote Gn the set G[1, 2,..., n] of all
connected standard graphs in [1, 2,..., n].

3. POLYMER GAS

We consider here the high temperature hard core polymer gas in a
lattice 4/Zd with 4 containing the origin 0 in Zd. A ``polymer'' R of this
gas is a subset of Zd; |R| denotes the number of its elements, and \(R) # R
denotes its activity (or fugacity). We also request that |R|�2, i.e. polymers
with just one elements are not allowed. Note that in case of translational
invariant activities this is non restrictive.

The interaction between polymers is a two body hard core inter-
action. Namely, given n polymers R1 , R2 ,..., Rn , their interaction energy is
�1�i< j�n U(Ri , Rj), where the two body interaction U(Ri , Rj) is defined
by

U(Ri , R j)={0
+�

if Ri & R j=<
if Ri & Rj{<

(3.1)

The grand-canonical partition function 54 of this polymer gas in the
volume 4 is given by

54=1+ :
k�1

1
k!

:
R1 ,..., Rk/4

|Ri |�2

\(R1) \(R2) } } } \(Rk) e&�1�i<j�n U(Ri , Rj) (3.2)

or equivalently

54=1+ :
k�1

1
k!

:
R1 ,..., Rk/4

Ri & Rj=<, |Ri |�2

\(R1) \(R2) } } } \(Rk) (3.3)
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The relevance of this system is due to the fact that a large class of lattice
systems can be rewritten in terms of (3.3), see below, Section 4.

The pressure of this gas, namely |4|&1 log 54 , can be written as a
formal series through a standard Mayer expansion on the Gibbs factor
exp &�1�i< j�n U(R i , Rj) in (3.2). This corresponds to write

exp _&\ :
1�i< j�n

U(Ri , Rj)+&= `
1�i< j�n

[e&U(Ri , Rj)&1)+1]

=1+ :
g # 1n

`
(i, j) # g

(e&U(Ri , Rj)&1) (3.4)

where �g # 1n
is the sum over all possible standard graphs between [1,..., n],

not necessarily connected. Note that (e&U(Ri , Rj)&1)=0 if Ri & Rj=< and
(e&U(Ri , Rj)&1)=&1 if Ri & Rj{<.

The sums in (3.2) and in (3.4) may be rearranged in the following way

54=1+ :
l�1

1
l !

`
l

i=1
_ :

ki�1

1
k i !

:
R1

(i),..., R ki
(i)

\(R (i)
1 ) } } } \(R (i)

ki
)

_ :
g # Gki

`
( p, q) # g

(e&U(Rp
(i) , Rq

(i))&1)& (3.5)

where �g # Gk
runs now over all possible connected standard graphs between

[1,..., k]. Therefore one obtains

log 54= :
n�1

1
n!

:
R1 ,..., Rn/4

|Ri |�2

,T (R1 ,..., Rn) \(R1) \(R2) } } } \(Rn) (3.6)

where

,T(R1 ,..., Rn)={
1 if n=1

:
f # Gn

f/g(R1 ,..., Rn)

(&1) | f | if n�2 and g(R1 ,..., Rn) # Gn

0 if n�2 and g(R1 ,..., Rn) � Gn

(3.7)

Note that if g(R1 ,..., Rn) is not connected, then ,T (R1 ,..., Rn)=0.
We expect l.h.s. of (3.6) to converge absolutely uniformely in 4 when

the ``activity'' of the polymer gas is sufficiently small. Roughly speaking big
polymers must be depressed (i.e. \(R) must be small if |R| is large) and
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also very spread polymers must be depressed (i.e. \(R) must be small if
points in R are far apart). One can show the following theorem

Theorem 1. If it is possible to find a constant a>0 such that

:
R/4 : 0 # R

|\(R)| ea |R|<a (3.8)

if \ is a translational invariant activity, or, if \ is not translational invariant
it is possible to find a constant a>0 such that

sup
d=0, 1,...

sup
x # 4

:
R/4 : x # R

|\(R)|
a|R|d

d !
<

a
4

(3.9)

then

|log 54 |� :
n�1

1
n!

:
R1 ,..., Rn/4

|Ri |�2

|,T (R1 ,..., Rn) \(R1) \(R2) } } } \(Rn)|�Ea |4|

(3.10)

where Ea is a constant independent of 4.

Remark. We want to outline again that (3.8) gives exactly in this
concrete framework the bound found in general by [KP]. For the non
translational invariant case, a simple but tedious computation shows that
the condition (3.9) tends to be equivalent to the one given in [KP] for
activities with a weak exponential decay.

Proof. We will prove the theorem bounding term by term the r.h.s.
of (3.10). Recalling first that ,T (R)=1, we can write

|log 54 |� :
R : |R|�2

|\(R)|

__1+ :
n�2

1
n!

:
R2 ,..., Rn/4

|Ri |�2

|,T (R, R2 ,..., Rn) \(R2) } } } \(Rn)|&
� :

R : |R|�2

|\(R)| _1+ :
n�2

1
n!

Bn(R)& (3.11)

where

Bn(R)= :
R2 ,..., Rn/4

|Ri |�2

|,T (R, R2 ,..., Rn) \(R2) } } } \(Rn)| (3.12)
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Now we can reorganize the sum over the sets R2 ,..., Rn using the fact that
,T (R1 ,..., Rn) actually depends only on the graph g(R1 ,..., Rn) # Gn . From
the explicit definition (3.7) of ,T (R1 ,..., Rn) we obtain

Bn(R)= :
g # Gn

} :
f # Gn
f/g

(&1) | f | } :
R2 ,..., Rn/4 : |Ri |�2

g(R, R2 ,..., Rn)=g

|\(R2) } } } \(Rn)| (3.13)

By the Rota formula we have

} :
f # Gn
f/g

(&1) | f | }�N(g) (3.14)

where N(g) denotes the number of connected tree graphs in g. The proof
of the Rota formula above can be found in [Ro], [Se], [GJ], [Ma], [Si].
See [PdLS] for a simpler proof using the Brydges�Battle�Federbush tree
graph identity, [BF], [B].

We observe now that

:
g # Gn

[ } ]= :
{ # Tn

:
g : {/g

1
N(g)

[ } ] (3.15)

Such equality can be proved as follows. First, we fix a connected tree graph
{ in Tn , then we sum, for { fixed, over all connected graphs in Gn which
contain { as a subgraph. We are clearly counting too much, since for the
same connected graph g in Gn there are exactly N(g) tree graphs which are
contained in it. Thus in the double sum �{ �g#t each g will be repeated
exactly N(g) times. Whence the presence of the factor 1�N(g) to correct this
double counting.

Inserting (3.14) and (3.15) in (3.13) we obtain

Bn(R)� :
{ # Tn

w({) (3.16)

where we have defined

w({)= :
R2 ,..., Rn/4 : |Ri |�2

g(R, R2 ,..., Rn)#{

|\(R2) } } } \(Rn)| (3.17)

Now, for any fixed set R$, we have the obvious bound

:
R : R & R${<

[ } ]�|R$| sup
x # R$

:
R : x # R

[ } ]
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then, one can easily check that

w({)�|R|d1 `
n

i=2 _ sup
x # Zd

:
Ri : x # Ri

|Ri |
di&1 |\(Ri)|& (3.18)

where di is the incidence number of the vertex i in the tree {. Using the well
known fact that �n

i=1 (di&1)=n&2 we can rewrite (3.18) in the form

w({)�|aR|d1 `
n

i=2
_ sup

x # Zd
:

Ri : x # Ri

|aRi |
di&1 |\(Ri)|

a & (3.19)

Recalling now (3.16) and using Cayley formula, we can sum over all
connected tree graphs in Gn and obtain

Bn(R)= :
{ # Tn

w({)� :
d1 ,..., dn

� di=2n&2

|aR|d1
(n&2)!

>n
i=1 (di&1)!

_ `
n

i=2 _ sup
x # Z d

:
Ri : x # Ri

|aRi |
di&1 |\(R i)|

a &
Let us first proceed in the case of translational invariant activities: one

has

Bn(R)�(n&1)! :
�

d1=1

|aR|d1

d1!
1

an&1 `
n

i=2 _ :
Ri % 0

:
�

di=1

|aRi |
di&1

(di&1)!
|\(Ri)|&

�(n&1)! (ea |R| &1)
1

an&1 `
n

i=2
_ :

Ri % 0

ea |Ri | |\(Ri)|&
where in the second line we used n&1�d1 in order to obtain the factor
1�d1 ! Using condition (3.8) we get

Bn(R)�(n&1)! ea |R| _:
a&

n&1

(3.20)

where : is defined by

:
R % 0

|\(R)| ea |R|=:
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Inserting (3.20) in (3.11)

|log 54 |� :
R : |R|�2

|\(R)| \1+ea |R| :
n�2

1
n _

:
a&

n&1

+
The condition :<a implies :�a<1. Then the series in square brackets is
summable and we get the proof performing the last sum over the sets R
using again (3.8).

If the activity is not translational invariant, just observe that
�d1+ } } } +dn=2n&2 1=( 2n&3

n&1 )�4n&1 and repeat the-same argument using
the condition (3.9). K

In what follows we will always suppose translational invariance. The
same results, changing suitably the constant involved in the bounds, holds
for the non translational invariant case.

4. THE MAIN THEOREM

The result of the section above allows us to study the high tem-
perature-low activity expansion for lattice spin systems. We will consider
the lattice spin systems that can be described as follows.

Let 4 be a subset in Zd, the cubic lattice in d dimensions (tipically 4
is a cube and |4| is the number of sites in 4); for x # 4, ,x is a random
variable (the ``spin'' at the site x), taking values in some probability space
(0x , +x). We assume that (0x , +x) is compact and it is the same for all x
and we denote it (0, +). We denote, for any finite subset X/4, 0X=
}x # X 0x . Moreover d+(,4)=>x # 4 d+(,x); and d+(,X)=>x # X d+(,x).
The partition function for such system is

Z4(;)=| d+(,4) exp _&\ :
X/4 : |X |�2

8(X, ,)+& (4.1)

The many-body potential (depending eventually on inverse temperature ;
and�or on activity z) 8(X, ,) is a bounded real valued measurable function
in 0X .

Many popular models can be described by a partition function of the
form (4.1): Ising-type or Potts-type spin models with N body long range
interactions, lattice gas with N body long range potential, and also spin
systems with continuous compact space state, as Heisemberg model.

The partition function (4.1) admits a polymer gas representation,
again via a simple Mayer expansion: writing

exp _&\ :
X/4 : |X | �2

8(X, ,)+&= `
X/4 : |X |�2

[(e&8(X, ,)&1)+1] (4.2)
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and grouping the connected parts of such expansion, the r.h.s. of (4.1) can
be rewritten as

Z4(;)=1+ :
k�1

1
k!

:
R1 ,..., Rk # 4

Ri & Rj=<, |Ri |�2

\(R1) \(R2) } } } \(Rk) (4.3)

where

\(R)=| `
x # R

d+(,x) :
g # GR

`
X # g

[e&8(X, ,)&1] (4.4)

being GR the set of all connected graphs in the set R.
In order to study the analiticity properties of the logarithm of the par-

tition function (4.1), therefore, we can use the result of Section 3.
In general, however, it is not easy to check the model-dependent con-

dition (3.8) for activities of the form (4.4).
Here we will use a simple technical device, introduced in 1981 by

M. Cassandro and E. Olivieri, which exploits the fact that for bounded spin
systems on the lattice the sum over the Mayer graph can be directly bounded,
for N body potentials absolutely summable in the sense specified below.
Then (3.8) can be satisfied also in this case, yielding, by Theorem 1, a direct
proof of the analicity of the pressure for bounded spin systems with abso-
lutely summable N-body potential.

Theorem 2. Consider a lattice system described by the partition
function (4.1), and its polymer gas representation (4.3) with the polymer
activity defined by (4.4). If it is possible to give for any connected graph g
such that supp g=n the following bound

| `
x # supp g

d+(,x) `
X # g

|e&8(X, ,)&1|�_� n `
X # g

J(X ) (4.5)

with

:
X % 0

J(X )�K, _� <1 (4.6)

and the following relation between _� and K holds

K<
|log _� |

4
(4.7)

then the logarithm of the partition function (4.1) can be written in terms
of an absolutely convergent series.
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Proof. We will bound directly l.h.s. of (3.8).

:
R % 0

|\(R)| ea |R|= :
R % 0

ea |R| } | `
x # R

d+(,x) :
g # GR

`
X # g

[e&8(X, ,)&1] }
� :

R % 0

:
g # GR

_� |R| ea |R| `
X # g

J(X )� :
R % 0

:
g # GR

_ |R| `
X # g

J(X )

(4.8)

Hence the theorem follows if we are able to show the inequality

F(_)= :
R % 0

:
g # GR

_ |R| `
X # g

J(X )<a (4.9)

where

_=_� ea

We now rewrite the sum over connected graphs g passing through the
lattice point x using Cassandro�Olivieri hierarchy. The latter is constructed
observing that, given a connected graph g, its links can be always ordered,
for some positive integer t, in the following way

g=[C0 , C 1
1 ,..., C 1

k1
,..., C t

1 ,..., C t
kt

]

where C0 is a link of g such that x # C0 . For 1�s�t, the links C s
1 ,..., C s

ks
represent the sth hierarchy and we have the following relations between
different hierarchies:

C s
i & _ .

ks&1

i=1

C s&1
i &{<

C s
i & _ .

s&2

l=0

.
kl

i=1

C l
i&=<

Thus the first hierarchy C 1
1 ,..., C 1

k1
of links of g is the collection of all links

of g which have a non empty intersection with C0 ; the second hierarchy
C2

1 ,..., C 2
k2

is the collection of links of g which have a non empty intersec-
tion with �i C 1

i , but has an empty intersection with the set C0 , and so on.
We will also denote, for s�1

2s= .
ks

i=1

C s
i>_\.

ks

i=1

C s
i +& \ .

ks&1

i=1

C s&1
i +& (4.10)
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while 20=C0 . The set 2s represents therefore the set of the new points
reached by the s th hierarchy. By definition |2s |>0 for s<t, because the
bonds of the (s+1)th hierarchy have intersection only with the set 2s , else
they would belong to an earlier hierarchy. Note that [20 , 21 ,..., 2t] is a
partition of the set supp g and thus

|20 |+|21|+ } } } +|2t |=|supp g| (4.11)

thus, for a given g=[C0 , C 1
1 ,..., C 1

k1
,..., C t

1 ,..., C t
kt

], we can always write

_ |supp g|�_ |20 |_ |21 | } } } _ |2t&1 |

Hence we can get the estimate

F(_)� :
C0 % 0

J(C0) _ |C0 |+ :
C0 % 0

J(C0) _ |20 | :
�

t=1

:
�

k1=1

:
C1

1 ,..., C1
k1

`
k1

j=1

J(C 1
j ) _ |21 |

} } } :
�

kt&1=1

:
C1

t&1,..., Ct&1
kt&1

`
kt&1

j=1

J(C t&1
j ) _ |2t&1 | :

�

kt=1

:
Ct

1 ,...,Ct
kt

`
kt

j=1

J(C t
j)

(4.12)

Let us start to perform the last sum in r.h.s. of (4.12), i.e. the sum over the
tth hierarchy, supposing to keep fixed all sets concerning the previous
hierarchies. We obtain

:
�

kt=1

:
C t

1 ,..., Ct
kt

`
kt

j=1

J(C t
j )� :

�

kt=1

1
kt ! \ :

C : C & 2t&1{<

J(C)+
kt

� :
�

kt=1

1
kt !

( |2t&1| K )kt�eK |2t&1 |&1

where the sum �C : C & 2t&1{< J(C ) is bounded by fixing one point in 2t&1

(and this gives the factor |2t&1| ) and then by summing over all C passing
for such point. Hence

F(_)� :
C0 % 0

J(C0) _ |C0 |+ :
C0 % 0

J(C0) _ |20 | :
�

t=1

:
�

k1=1

:
C1

1 ,..., C 1
k1

`
k1

j=1

J(C 1
j ) _ |21 |

} } } :
�

kt&1=1

:
C1

t&1,..., C t&1
kt&1

`
kt&1

j=1

J(C t&1
j ) _ |2t&1 |(eK |2t&1 |&1)
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Note now that eK_<1 certainly holds if (4.7) does and a is chosen small
enough, namely a<(3�4) |log _� |. By elementary computations, using
eK_<1, the factor _ |2t&1 |(eK |2t&1 |&1) can be bounded by

_ |2t&1 |(eK |2t&1 |&1)�
K

|log _|

We sum now the next hierarchy t&1 as before keeping fixed everything
concerning the previous hierarchies and obtain

:
�

kt&1=1

:
C 1

t&1,..., C kt
t&1

`
kt&1

j=1

J(C t&1
j ) _ |2t&1 |(eK |2t&1 |&1)

�
K

|log _|
:
�

kt&1=1

1
kt&1 ! \ :

C : C & 2t&2{<

J(C)+
kt

�
K

|log _|
(eK |2t&2 |&1)

Iterating until t=1, we obtain

F(_)� :
C0 % 0

J(C0) _ |C0 |+ :
C0 % 0

J(C0) :
�

t=1
\ K

|log _|+
t

�K __+
K

|log _|&K &
hence we get (4.9), and then the proof of the theorem, if the following con-
dition is satisfied

K __+
K

|log _|&K &<a

It is not easy to solve explicitly the inequality above and then to find the
value of a which maximize the constant K. We observe however that a<
(3�4) |log _� | imposes for K a behaviour at most of the form K=C |log _� |.
Choosing, e.g., a=(1�2) |log _� |, which corresponds to the choice _=- _�
(i.e., |log _|= 1

2 |log _� | ), one easily obtains

K<
|log _� |

4
(4.13)

A more careful computation would just improve the value of the constant
C in front of |log _� | in (4.13). More precisely, it is possible to show that C
is a decreasing function of _� and lim_� � 0 C=1�2 and lim_� � 1 C=1�4. K

5. DIRECT PROOF OF THE ISRAEL THEOREM

Theorem 2 can be used to obtain a proof based only on combinatorial
arguments of the result in [I], proved in the framework of Dobrushin
theory (see also [DM], [Si] and references therein).
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Consider a lattice system described by the partition function (4.1) with
many-body potentials such that

|8(X, ,X)|�W(X ), for all X (5.1)

with W(X ) positive function defined on the sets of Zd such that, for some
r>0

:
X % 0

W(X ) er |X |=I(r)<� (5.2)

which is a condition analogous to [I]. We also define

I� = sup
X/4

W(X ) (5.3)

Then we have

Theorem 3. The logarithm of the partition function (4.1) of a
lattice system with 8 satisfying (5.1) and (5.2), converges absolutely unifor-
mely in the volume, provided the following relation between I and r is
satisfied

I<
e&I�

4
r (5.4)

Proof. For any R/Zd and for any graph g # GR we have

} | `
x # R

d+(,x) `
X # g

[e&8(X, ,)&1] }
� `

X # g

W(X ) eW(X )�e&r |R| `
X # g

er |X |W(X ) eI�

Hence we can apply Theorem 2 posing _� =e&r and J(X )=er |X |W(X ) eI� . K

6. LATTICE SYSTEMS WITH N-BODY INTERACTION, N FINITE

The systems with interactions involving a finite number of bodies can
be controlled using Theorem 2 by a high temperature expansion, as the
next theorem shows.
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Theorem 4. Consider a lattice system at inverse temperature ;
described by the partition function

Z4(;)=| d+(,4) exp {&; :
X/4 : |X |�2

V(X, ,)= (6.1)

Let V(R, ,R) such that V(R, ,R)=0, \R : |R|>N with N�2 positive
integer and |V(R, ,R)|�W(R) \R : |R|�N, with W(R) positive function
such that

:
R % 0

2�|R|�N

W(R)=J<� (6.2)

then the logarithm of the partition function is an absolutely convergent
series uniformely in 4 for ; satisfying:

;Je;J<e&4N (6.3)

Proof. We consider the polymer activity related to the partition func-
tion (6.1)

\(R)=| `
x # R

d+(,x) :
g # GR

`
X # g

[e&;V(X, ,)&1] (6.4)

The quantity (4.5) can be bounded therefore by

| `
x # R

d+(,x) `
X # g

|[e&;V(X, ,)&1]|� `
X # g

;e;JW(X )

Now it is not difficult to check that

inf
g : |supp g|=n

| g|�
n
N

(6.5)

The minimum of | g| for supp g fixed to the value n is obtained by con-
sidering generalized tree graphs (i.e. graphs without loops), then by direct
inspection it is easy to check that the minimum number of links of a tree
graph between n points in which links can be done by at most N points is
(n&1)�(N&1)>n�N, hence we obtain, supposing ;Je;J<1 and using (6.5)

`
X # g

;e;JW(X )� `
X # g

;Je;J W(X )
J

�(;Je;J)n�N `
X # g

W(X )
J

(6.6)
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Thus we can apply Theorem 2 with _� =(;Je;J)1�N and J(X )=W(X )�J,
hence we get convergence if

1<
|log(;Je;J)1�N|

4

which is formula (6.3). K

7. THE LATTICE GAS WITH N-BODY INTERACTION

The lattice gas interacting through many body interaction can be also
treated using Theorem 2. We will prove the following theorem.

Theorem 5. Consider a lattice gas at temperature ;&1 and activity z,
described by the grand canonical partition function

54(;, z)=1+z |4|+ :
n�2

zn :
X/4
|X |=n

e&; �Y/X, |Y|�2 V(Y ) (7.1)

with

:
X % 0

|V(X )|=J<� (7.2)

then |4|&1 log 54(;, z) can be written as a series absolutely convergent
uniformely in 4, for all ; and z satisfying the following condition

z(exp[4;Je;J]&1<1 (7.3)

Proof. We can transform 54(;, z) in a form suitable for polymer
expansion. We can write

54(;, z)=:
_4

z�x # 4 _x exp {&; :
X/4
|X |�2

V(X ) `
x # X

_x= (7.4)

where the ``spin'' variables _x at the site x # 4 can take the two values
_x=0, 1, and �_4

means the sum over all possible configurations of the
values of spins in 4. Then, by Mayer expansion on the exp

54(;, z)= :
R1 , R2 ,..., Rk # ?(4)

\(R1) \(R2) } } } \(Rk)
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where ?(4) is the set of the partitions of 4 and

\(R)={
1+z if |R|=1

:
_R

z�x # R _x _ :
g # GR

`
X # g

(e&;V(X ) >x # X _x&1)& if |R|�2

Now note that, for any g # GR ,

`
X # g

(e&;V(X ) >x # X _x&1)={
`

X # g

(e&;V(X )&1) if _x=1 \x # R

0 otherwise

hence defining

`(R)={
1 if |R|=1

\ z
1+z+

|R|

_ :
g # GR

`
X # g

(e&;V(X )&1)& if |R|�2

we can write

54(;, z)=(1+z) |4| :
[R1 ,..., Rk]

|Ri |�2 Ri & Rj=<

`(R1) `(R2) } } } `(Rk)

and thus also

log 54(;, z)=|4| log(1+z)+ :
k�1

1
k!

:
R1 ,..., Rk
|Ri |�2

,T (R1 ,..., Rk)

_`(R1) `(R2) } } } `(Rk)

Hence the lattice gas pressure is analytic when the infinite sum in r.h.s. of
equation above is absolutely convergent uniformely in 4. We have

} \ z
1+z+

n

`
X # g

[e&;V(X )&1] }�\ z
1+z+

n

`
X # g

; |V(X )| e;J

�\ z
1+z+

n

`
X # g

|V� (X )|
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where V� (X )=; |V(X )| e;J. Hence we can apply Theorem 2 with K=;Je;J

and

_� =\ z
1+z+

and the convergence occurs when

;Je;J<
1
4 } log \ z

1+z+ }
which is the condition (7.3). K

This result, specifically for N-body interaction, was proved using
KS-equations in [GMR] (see also [R]), but a proof of it bounding
directly the series expansion of the pressure was still unavailable in
literature. Note that the relation between z and ; in (7.3), namely the fact
that z can be taken large if ; is sufficiently small, is of the form needed to
apply the particle-hole symmetry pointed out in [GMR], enlarging the
analiticity region.
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